CARBONIUM ION REARRANGEMENT OF THE 2-PHENYLBORNYL SKELETON J.M. Coxon

Department of Chemistry, University of Canterbury, Christchurch, New Zealand. Alan J. Jones, C.P. Beeman and M.U. Hasan

Department of Chemistry, University of Alberta, Edmonton, Canada.

I.D. Rae

Department of Chemistry, Monash University, Clayton, Victoria, Australia. (Received in UK 20 October 1974; accepted for publication 16 January 1975)

The application of ¹³C n.m.r. techniques in the study of carbocations generated in super-acid media at low temperature is well established¹. Carbon-13 chemical shifts have been used in attempts to assess the degree of σ -participation in substituted norbornyl cations. In the 2-phenylnorbornyl case it has been suggested² that substantial charge delocalisation on to the neighbouring phenyl group stabilises this cation, while in the analogous 1,2-diphenyl species unfavourable non-bonded interaction between the phenyl rings reduces π -p orbital overlap and results in rapid interconversion, by 1,2-Wagner-Meerwein shifts, of the degenerate classical ions. The 1,2-dimethylnorbornyl cation is considered to parallel the diphenyl analogue while in the 2-methylnorbornyl cation σ participation is significant.

We have examined³ the carbocations generated from 2-<u>endo</u>-phenylborneol and 2-phenylborn-2-ene⁴ in order to determine the effect of the 1-methyl substituent on π -p and σ -overlap. A common ion⁵ was formed from these substrates below -40° which slowly rearranged to a second ion at -10° . The off-resonance ¹³C spectrum of the ion formed below -40° is inconsistent with the structure of the expected ion 1 or the simple W-M rearrangement product 2. The spectrum (see Table I) exhibits 3 methyl, 2 methylene, 3 methine, 1 quaternary, 1 cation carbon and 6 phenyl carbons, consistent with the structures 3 or 4. The structure 4, proposed earlier by Deno and Houser⁶ as that of the ion formed from treatment of

5**77**

TABLE I Carbon-13 Chemical Shifts and Assignments

	Ion 3 ^b						n 4				
⁶ 13 _C ppm ^a	C- Type	Assign- ment	- ⁶ 13 _C ppm ^a	С- Туре	Assign- ment	⁶ 13 _C ppm ^a	С- Туре	Assign- ment	^δ 13 ppm ^a	С- Туре	Assign- ment
262.3 ₈	q−C [⊕]	C-2	50.6 ₄	С-н	(C-4)	225.5 ₄	q−C	(C-1)	43.2 ₀	С-н	(C-3')
153.08	C-H	<u>m</u> -C	^{49.0} 2	^{сн} 2	C-3	^{210.1} 1	q−C⊕	(C-3)	34.7 ₉	С-н	(C-6)
141.6 ₅	С-н	<u>o</u> -C	41.3 ₆	^{СН} 2	C-7	144.1 ₉	С-н	C-2	30.0 ₉	^{СН} 2	(C-4)*
140.62	С-н	<u>o</u> -C	37.5 ₈	q-C	C-5	135.4 ₀	q-C	α- C -φ	27.44	^{CH} 2	(C-5)*
^{139.9} 6	q-C	α-С-ф	29.8 ₇	сн _з	exo-CH ₃	134.5 ₄	С-н	<u>o</u> -C	21.22	^{Сн} 3	C-6'
132.1 ₀	С-Н	<u>p</u> -C	21.2 ₉	сн ₃	endo-CH ₃	^{131.4} 6	С-н	<u>m</u> -C	20.52	сн ₃	C-3"
68.2 ₃	С-н	C-1	14.23	сн ₃	C-6'	129.4 ₁	С-н	<u>р</u> -С	20.33	сн _з	C-3"
57.2 ₈	С-н	(C-6)									

a. Given relative to TMS. Determined relative to internal CCl₄ 96.34 ppm downfield from TMS

b. Minor component exhibited a resonance at 261.3₈ (q-C⁹). All other minor component resonances are unassigned.
 Parentheses etc. indicate uncertainties in assignment between given pairs of lines.

TABL	E II P.m.r.	Data ³	for	Ion 3			
Group	Shift 🤇	\$ (p.p	.m.) ^a		Coupling Constants		
C(2)phenyl	8	8.47 ($W_{\overline{2}}^{h}$ 24Hz)			(HZ)		
	7	7.98	$(w_{\overline{2}}^{h} 1$	8Hz)			
С(1)Н	4	4.62			^J 1,6 <u>exo</u>	4	
С(3) <u>ехо</u> -Н	4	4.09			J _{3exo} , 3 <u>endo</u>	22	
					$J_{3 exo}, 4$	5.5	
C (3) <u>endo</u> -H	3	3 .9 5			J _{3endo} , 3 <u>exo</u>	22	
С(б) <u>ехо</u> -Н	3	3.04			JCH ₃ 6	7	
					J _{6,1}	4	
С(4)Н	2	2.5			^J 4,3 <u>exo</u>	5.5	
с(7)н ₂	1	L.83	(W <mark>h</mark>	5Hz)			
С (5) <u>ехо</u> -СН ₃	1	L.23					
C(5) <u>endo</u> -CH ₃	(0.76					
с (6) Сн ₃	(0.64			^J 6,СН ₃	7	

2-phenyl-borneol with H_2SO_4 at room temperature, can be eliminated. Indeed the proton and ¹³C spectra of the ion obtained at -10^o, in the present work, are identical to those obtained for the Deno and Houser ion 4.

The structure 3 is, therefore, proposed for the ion generated from 2-<u>endo</u>phenylborneol and 2-phenylborn-2-ene at $-70^{\circ} - -40^{\circ}$. The identity of this ion follows further from the p.m.r. spectrum (Table II); C(1)H, deshielded by the C(2)-carbocation, is coupled (J 4Hz) to C(6)<u>exo</u>-H which is coupled (J 7Hz) to methyl - C(3)H₂ appears as an AB quartet with the downfield proton (<u>exo</u>) further coupled to C(4)H. Quenching of the ion at -70° using dilute sodium bicarbonate in SO₂ClF results in the formation of the olefin $2A^4$. It is noteworthy that the ion 3 can also be independently generated from an authentic sample of $2A^4$ on treatment with HSO₃F at -70° .

Formation of ion 3 from 2-<u>endo</u>-phenylborneol in $HSO_3F - SO_2ClF$ at -70° arises by a W-M shift to ion 2, followed by a 2,6-hydride and W-M shift as shown in scheme 1. The stability of ion 3 at this temperature reflects the tertiary benzylic nature of this ion and the absence of non-bonded interaction between phenyl and C(1)-methyl. This latter interaction, present in ion 1, will result in twisting of the phenyl group with consequent reduction in p- π orbital overlap and accounts for the failure to observe this ion. The reversible equilibrium between ions 2 and 3 is established by quenching of ion 3 at -70° to give olefin 2A and by formation of ion 3 from this olefin. The irreversible formation of ion 4 at -10° probably arises <u>via</u> ion 1^7 . At this temperature the system has sufficient energy to overcome the energy barrier to form this thermodynamically stable ion.

Acknowledgements: The authors (A.J.J., C.P.B., M.U.H.) wish to thank the National Research Council of Canada for financial support.

References

- G.A. Olah, "Carbocations and Electrophilic Reactions", Verlag Chemie, GmbH, Germany (1973).
- G.A. Olah, G. Lang, G.D. Mateescu and J.L. Reimenschneider, <u>J.Amer.Chem.Soc</u>.
 95, 8698 (1973); G.A. Olah and G. Liang, <u>J.Amer.Chem.Soc</u>., <u>96</u>, 195 (1974).
- 3. ¹H and ¹³C spectra were determined on a Bruker HFX90 spectrometer in the Fourier mode for solutions in HSO₃F, SO₂ClF using CDCl₃ or CD₂Cl₂ lock and CCl₄ as internal reference.
- 4. J.M. Coxon, M.P. Hartshorn and A.J. Lewis, Aust.J.Chem., 24, 1017 (1971).
- 5. A minor component (<u>ca</u>. 10%) is observed in the decoupled ¹³C spectrum. The paucity of data precludes identification of this species, though the shift of the carbonium ion carbon (261.4 ppm) suggests a phenyl (1) rather than methyl (2) stabilized species. See ref. 2 and G.A. Olah and G. Liang, <u>J.Amer.Chem.Soc.</u>, <u>96</u>, 189 (1974).
- 6. N.C. Deno and J.J. Houser, <u>J.Amer.Chem.Soc</u>., 86, 1741 (1964).
- E. Huang, K. Ranganayakulu and T.S. Sorensen, <u>J.Amer.Chem.Soc.</u>, <u>94</u>, 1779, 1780 (1972).